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Noise-induced fluctuations of period lengths of stable periodic orbits
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We discuss a class of one-dimensional maps, which possesses a globally attracting stable periodic orbit.
Despite a strongly negative Lyapunov exponent, a small amount of noise can introduce fluctuations of the
period length. It is shown that this is a reasonable model for the observed dynamics of a bubble formation
experiment in a heated capillary embedded in boiling water.
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I. INTRODUCTION

The interaction of deterministic nonlinear dynamical sy
tems and noise is known to create a huge variety of differ
effects, depending on features of the system and of the n
The different aspects of noise in dynamical systems h
been studied since the early beginnings of nonlinear dyn
ics. Among the very many phenomena are noise-induced
sis and noise-induced escape@1#, but also noise-induced sta
bilization of chaotic trajectories@2#. There are also situation
where noise does not introduce any unexpected features@3#.
In particular, if the unperturbed system possesses a st
periodic orbit with a sufficiently negative Lyapunov exp
nent, perturbations of the dynamics by noise typically yie
orbits that look like noisy versions of the unperturbed orb
i.e., dynamical noise coupled into the system has a sim
effect as observational noise without interaction with the
namics. In particular, the noisy system generates the s
period length as the unperturbed system.

In this paper, we discuss a class of maps, where a s
amount of noise leads to fluctuations of the period length
an orbit that is not only linearly stable but has an~adjustable!
negative Lyapunov exponent of arbitrarily large modulu
This is a rather unexpected phenomenon that can be
understood by studying the structure of the map. Sim
maps have been found to exhibit unexpected instability w
being used as elements of coupled map lattices@4#. In Sec.
III, we describe an experiment on bubble formation in bo
ing water. In Sec. IV, observed time series data with h
sampling rate are converted into Poincar´e map data. We
show that a map with the properties described above~and an
additional nonstationarity! produces data very similar to tha
of the bubbling experiment. We end with some conclusio
in Sec. V.

II. STABLE PERIODIC ORBITS WITH NOISE SENSITIVE
PERIOD LENGTH

We study a particular behavior of noise perturbed o
dimensional dynamical systems in discrete time given by

xn115 f ~xn!1hjn , ~1!

where x, f ,jPR and jn is white noise, i.e.,̂ jn&50 and
^jnjm&5dn,m . The noise amplitudeh will be typically small
1063-651X/2003/67~3!/036210~5!/$20.00 67 0362
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throughout this paper, since the behavior of Eq.~1! is to be
compared to the behavior of the deterministic systemh
50, which will be called the unperturbed system. Moreov
the noisej will be taken from a bounded support withuju
<A12.

The periodic orbits with strongly negative maxim
Lyapunov exponent are typically very robust against noi
As an example, consider the well-studied logistic equat
xn11512axn

2 in the regime of a stable period-4 orbit: If th
maximal Lyapunov exponent of this orbit is sufficient
negative, only a considerable amount of noise can des
the periodicity, i.e., the noisy orbit typically will look like the
periodic orbit with mere observational noise.

In fact, the shadowing lemma of Anosov and Bowen@5#
supplies the mathematical framework for this observation
solution of Eq.~1! is called anh-pseudo-orbit of the unper
turbed deterministic dynamical system (h50). An orbit
$yn% is said tod shadow the orbit$xn% if uxn2ynu,d; n.
The shadowing lemma then states that if the unpertur
dynamical system@i.e., Eq.~1! for h50] is hyperbolic, then
for everyd!1 there is anh0 such that everyh-pseudo-orbit
with h,h0 can bed shadowed by an orbit of the unpe
turbed system, i.e., there exists a solution of the determin
system which remainsd close to the solution of the per
turbed system for all times.

A stable periodic orbit far from a bifurcation is a hype
bolic invariant set@6#, hence the shadowing lemma applie
Since all solutions of the unperturbed system relax tow
the periodic orbit, the perturbed orbit has to remain close
it for all times, which in particular means that the perturb
orbit must not contain ‘‘phase slips,’’ i.e., it must rema
synchronized with the period of the unperturbed orbit. T
explains the robustness mentioned in the example above

Consider now instead the following one-dimension
map:

xn115H a1bxn
2 if xn,c

dxn if xn>c,
~2!

with 0,d!1, a,b.0, andc5(12A124ab)/2b2e (c is
e to the left of the intersection of the parabola with the d
agonal!. For a50.6, b50.3125, ande50.05, the graph is
depicted in Fig. 1. This system possesses a stable per
orbit ~for our choice of parameters of period 4!. As shown in
©2003 The American Physical Society10-1
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Fig. 2, a small amount of noise introduces frequent ‘‘pha
slips,’’ i.e., the period of the orbits seems to fluctuate, des
the fact that the Lyapunov exponent isl'21.1 and hence
expresses strong linear stability. With the small noise am
tude ofh50.025, already about one-third of all cycles po
sess five iterates, and about 5% have a length of six itera
The perturbations by noise push points in the almost mar
ally stable part of the graph closer to or farther from t
discontinuity, so that it can take more or less iterations
the trajectory to reach the lower branch of the map.

The reason for the sensitivity with respect to noise des
the linear stability lies in the discontinuity of the grap
which itself introduces a sequence of discontinuous bifur
tions. Under rather slight modifications of the graph, the
riodic orbit of the noise-free system changes its period, w
out a smooth change of the Lyapunov exponent. Hence,
closeness of the orbit to a bifurcation is unrelated to
modulus of the Lyapunov exponent. If the system is close
a bifurcation, a small amount of noise introduces switches
the dynamical behavior from prebifurcated to postbifurca
and back, since the additive noise in the state vectorxn can
be reinterpreted as noise on the parameters of the ma
fact, it is well known@7# that noise modifies the appearan
of bifurcations also in smooth dynamical systems. Hen
despite the fact that, also in this example, the shadow

FIG. 1. Graph of the map Eq.~2! together with 1000 noisy
iterates (h50.025).

FIG. 2. Iterates of Eq.~2! with h50.025.
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lemma is valid, the valueh0 for any reasonabled is very
small, and more importantly the numerical value of the la
est Lyapunov exponent is unrelated toh0 since the Lyapunov
exponent does not tell anything about the closeness to
bifurcation. Instead, the distancec2xp between the discon
tinuity and the periodic point,xp,c, closest to it delimits the
noise level at which shadowing breaks down.

III. THE BUBBLE FORMATION EXPERIMENT

When a liquid is heated bubbles are formed preferably
nucleation sites, small inhomogeneities in the inner surf
of the container. In order to better understand bubble form
tion, some experiments have been devised where bubble
formed inside a capillary tube@8–11#.

The apparatus used in the experiments of Refs.@10,11#
consists of a large beaker filled with water at boiling te
perature. A small capillary tube is located in the center of
beaker. The bottom part of the capillary is sealed with
ramic through which a thin wire enters the capillary. In tu
a small dc current passes through the wire and supplies
ditional heat to the water inside the capillary. This arrang
ment tries to mimic a nucleation point. The vapor inside t
capillary forms a bubble that is, in principle, detached wh
the buoyancy force exceeds the surface tension at the u
neck of the capillary. After that a new bubble starts to for

The time at which a bubble separates from the capill
can be measured by a low-power laser beam that pa
through the beaker just above the upper neck of the capill
and is recorded on the opposite side of the capillary b
photodiode. When the bubble separates from the capill
the beam reaches the diode, but as soon as a new bu
starts to form, the beam is scattered. The analog signal o
diode is then digitized and stored in a personal computer
some cases, the experiment is videotaped and the image
correlated with the data obtained with the laser beam@11#.
This gives some insight on the mechanisms of bubble form
tion inside the capillary. However, the experimental resu
depend sensibly on the details of the capillary; in some
wire extends inside the capillary more than in others, or
inner section is not constant.

Part of the experimental data is shown in Fig. 3. T
heights of the peaks shown seem not to reflect propertie
the bubbles, and the relaxation appears to be a propert
the electronics. Hence we have good indications that the o
relevant information is the time between the detachmen
successive bubbles, or what is the same, the time neede
a bubble to form and separate from the capillary. Fro
longer segments of the time series it is evident that there
sequences of bubbles separated by a bubble that took a
time to form. From the videotape, we know that the volum
of a bubble is more or less proportional to the time it takes
form, so we can speak of large and small bubbles@11#.

IV. MODELING EXPERIMENTAL OBSERVATIONS

After reducing the data to maplike data by the techniq
of a Poincar´e surface of section~introducing a threshold on
the recorded voltage around 0.5 V!, the alternation between
0-2
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the production of about 5–7 large bubbles and a single sm
bubble is very evident~see Fig. 4!. As shown in Ref.@12#,
time intervals obtained from Poincar´e sections are perfec
observables in the sense of Takens embedding theorem;
dynamical properties are equivalent to phase space obs
ables. We chose them, since they have a direct physica
terpretation in terms of the time intervals in between
formation of successive bubbles, which~assuming almos
constant vapor production by constant heat supply from
hot wire! corresponds to bubble size. In a first return map
these observablesTk , one observes essentially three pr
nounced maxima of the invariant density: two isolated poi
corresponding to the combinations (Tk ,Tk11)
5(long, short) and (Tk ,Tk11)5(short, long), and a large
blob representing all points made of~long, long! time inter-
vals. The fact that the attractor is composed of disconne
parts suggests that the Poincar´e map cannot be chaotic sinc
a chaotic invariant set has at least one expanding direc
The natural invariant measure of a system with an expand
direction is continuously nonzero when restricted to the
panding manifold. On the other hand, the histogram of
‘‘periods,’’ i.e., of one plus the number of large bubbl
forming in between two small ones, shows fluctuations of
period length. The data shown in Fig. 4 show some non
tionarity, but it is evident that the fluctuations of the peri
length are not directly linked to the variation of the upp
enveloping curve, which is something like the maximal tim
in between successive bubbles. In the experiment, the l

FIG. 3. A segment of the data obtained in the experiment. In
experiment, the voltage through the wire was 2.1 V.

FIG. 4. Part of the Poincar´e map data obtained from the inte
polation of the experimental data by a cut at a voltageV(t)
50.5 V, recording crossings from below.
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variation can have many origins, such as variations of
temperature of the water tank requiring more or less heat
vapor production, or the air pressure modulating the boil
temperature.

We try to model the experimental data by a noise p
turbed deterministic nonchaotic map that should be able
produce fluctuations of the period length. At the same time
is required to possess periodic points with almost the sa
value, since the large time intervals are almost constant, w
a weak tendency to increase toward the small bubble eve

It is hence natural to try a map of the family introduced
Sec. II. With some fine tuning of the parameters and
introduction of a sinusoidal nonstationarity, we arrive at t
following map:

xn115H a~fn!1c~xn2b!21hjn , xn,d~fn!

161hjn , xn.d~fn!,
~3!

with a(fn)53111.2 cos(fn), b519.5, c50.0205, d(fn)
536.812.9 cos(fn), andh50.13. To introduce nonstation
arity, the parametersa and d are varied sinusoidally with a
slow phase anglefn5n/40. Throughh, about 2% of dy-
namical noise is coupled to the system, and measurem
noise~distributed uniformly in the interval@21.2,1.2#) was
added for a ‘‘realistic’’ appearance of the resulting time s
ries; 1500 iterates of this noisy map, together with the gra
for f50, are shown in Fig. 5. This is strikingly indistin
guishable from the equivalent representation of the exp

is

FIG. 5. Return map of data generated by our model Eq.~3! ~top
panel! and of the experimental data~bottom panel!. In both figures,
the graph of Eq.~3! for fn50 is included.
0-3
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mental data. The histogram of period length distributi
agrees very well with the experimental results~see Fig. 6!,
and the same goes for the time series itself~see Fig. 7!.

Since the map creates a stable periodic orbit, no detail
the graph outside this orbit can be discerned, and hence
model might appear to be ratherad hoc. A more detailed
comparison is difficult due to the combined effect of nons
tionarity and noise. Nonetheless, the following approa
sheds more light into the issue of model verification. W
assume that the nonstationarity is originated by the drift o
least one system parameter on time scales that are abou
order of magnitude larger than the time intervals in betwe
bubbles. Hence, the experimental data are considered t
produced by an at least one-parameter family of maps, wh
are all superimposed in a plot of the return map of the
time series. However, a suitable selection of all those d
segments, which~in some reasonable approximation! repre-
sent this dynamical system for a single fixed parame
value, should give a faithful image of the graph of the m
if we average over all the data in order to eliminate the no
This idea was formalized in Ref.@13# by the concept of
overembedding: The use of time delay embedding vector
the spirit of Takens with a sufficiently high dimensionali
should allow us to reconstruct the extended phase sp
given by the phase space of the dynamical system plus
space of the time variant parameters. Neighbors of a sele
embedding vector then should represent almost the s
equation of motion. Due to the fact that we are dealing h

FIG. 6. The histogram of the distributions of period length
obtained from the experimental data~dashed! and from 1500 iter-
ates of our model~continuous!.

FIG. 7. Typical time series created by Eq.~3! to be compared to
Fig. 4.
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with a one-dimensional map with a periodic orbit, the who
concept boils down to the following procedure.

We select all subsequencesSj5$Tj 25 ,Tj 24 , . . . ,Tj 11%
with the property thatTj 1k.c, for kÞ0 andTj,c with c
'25. In other words, these are subsequences of the f
LLLLLSL, where L ~S! denote a time interval large
~shorter! thenc. Moreover, in order to remove the effect o
the nonstationarity expressed by the variation of the en
lope in Fig. 4, we requirea,Tj 1k,b, kÞ0 with some suit-
able interval @a,b#. Then we study T̄k5^Tj 1k&, k5
25, . . . ,1,averaging over all the sequencesSj found in the
data and fulfilling these conditions. These averages
shown, for both the experimental data and for the data c
ated by our noisy nonstationary map, in Fig. 8 for seve
intervals @a,b# in a two-dimensional embedding. In eac
case, we observe a short part of the noise-free graph of
map. The nonstationarity of the experimental data seem
consist in an up-down shift of the left part of the grap
together with a corresponding truncation at the rig
whereas the lower right branch seems to be time indep
dent. The similarity of the results from experimental data a

,

FIG. 8. The properly matched and averaged iteratesT̄k of the
experimental~dashed! and the numerically generated~continuous!
data~lower plot: magnification of the essential part!. The plot can
be interpreted as showing the graph of the underlying o
dimensional map for different values of the time variant parame
that mediates the nonstationarity. Since the map creates stable
odic orbits, only a very small part of the graph~shown for the
maximum and minimun of cosfn as dashed-dotted curves! can be
extracted from the data.
0-4
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NOISE-INDUCED FLUCTUATIONS OF PERIOD . . . PHYSICAL REVIEW E67, 036210 ~2003!
our model data confirms that our model is reasonable.
A comment on estimating Lyapunov exponents is in ord

Since the period of the cycles varies, the distances of
images of nearby points in embedding space can be q
large. However, a simple analysis of how the average
tance between thekth images of pairs of nearby points d
pends onk shows that this growth is not exponential~see,
e.g., the algorithms described in Ref.@14#!. This type of in-
stability is also found in the data obtained for the mod
whose Lyapunov exponent has the valuelmap52` ~the
lower branch of the map is horizontal, hence the perio
orbit is superstable!. This may serve as an example that o
has to distinguish noise-induced divergences from posi
Lyapunov exponents while analyzing the experimental da

Given the success of the model, we would like to know
it can give some insight to bubble formation in a small ca
illary, and in particular why a train of large bubbles is inte
rupted by a small one. The process of bubble formation
side a capillary is very complex and not fully understoo
High-speed camera recordings~500 frames per second! still
do not resolve this complexity. Before detachment, the fo
of the bubble is a sphere outside the capillary attached
cylinder inside the capillary. The bubble grows because
crobubbles are formed in the lower part of the heating w
and are incorporated into the larger bubble. After the deta
ment of the spherical part of the bubble, the cylindrical p
recoils into the capillary and a new bubble begins to for
What is observed is that sometimes the microbubbles b
to form a new bubble below the cylindrical one, which
expelled as a small bubble by the bubble under it. The la
bubble also expels the water that separates it from the s
bubble and will eventually be expelled as a large bubble.
expelling this excess water, the system goes back to its in
state and again some large bubbles are formed.
e

r-
99
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V. CONCLUSIONS

We have studied a class of maps, which has the coun
intuitive property that despite arbitrarily negative Lyapun
exponents small perturbations can induce phase slips of
noisy periodic orbit and hence can introduce random fluct
tions of the period length. The reason for this behavior lies
the vicinity of these maps to an unconventional type of
furcation. Due to a discontinuity of the graph of the ma
small parameter variations can modify the period length,
though no eigenvalue of the Jacobian ever becomes uni

We have described a bubble formation experiment in b
ing water, where irregular fluctuations of a period length a
observed. By data analysis, we have shown that a map o
type described before most surely is responsible for the
havior. We proposed the physical mechanism from wh
such a behavior is to be expected.

As a general conclusion, this example establishes an
teresting example of the interplay of nonlinearity and noi
where stable periodic orbits create irregularities that naiv
would be more interpreted as deterministic chaos. Howe
in this case, the strongest argument against chaos is the
connectedness of the reconstructed attractor, which con
dicts the continuity of a Sinai-Ruelle-Bowens measure in
expanding direction. Since we are treating data in discr
time, the alternative could be a three-band attractor simila
the two-band attractor in the logistic equation slightly b
yond the Feigenbaum point, but a regular alternation fr
one band to the other takes place.
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