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Noise-induced fluctuations of period lengths of stable periodic orbits
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We discuss a class of one-dimensional maps, which possesses a globally attracting stable periodic orbit.
Despite a strongly negative Lyapunov exponent, a small amount of noise can introduce fluctuations of the
period length. It is shown that this is a reasonable model for the observed dynamics of a bubble formation
experiment in a heated capillary embedded in boiling water.
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[. INTRODUCTION throughout this paper, since the behavior of Ey.is to be
compared to the behavior of the deterministic system
The interaction of deterministic nonlinear dynamical sys-=0, which will be called the unperturbed system. Moreover,
tems and noise is known to create a huge variety of differentne noise¢ will be taken from a bounded support with|
effects, depending on features of the system and of the noises \/12.
The different aspects of noise in dynamical systems have The periodic orbits with strongly negative maximal
been studied since the early beginnings of nonlinear dynam-yapunov exponent are typically very robust against noise.
ics. Among the very many phenomena are noise-induced crids an example, consider the well-studied logistic equation
sis and noise-induced escdgdd, but also noise-induced sta- x,,,=1—ax? in the regime of a stable period-4 orbit: If the
bilization of chaotic trajectoriel2]. There are also situations maximal Lyapunov exponent of this orbit is sufficiently
where noise does not introduce any unexpected feaf8ies negative, only a considerable amount of noise can destroy
In particular, if the unperturbed system possesses a stabige periodicity, i.e., the noisy orbit typically will look like the
periodic orbit with a sufficiently negative Lyapunov expo- periodic orbit with mere observational noise.
nent, perturbations of the dynamics by noise typically yield |n fact, the shadowing lemma of Anosov and Bowéi
orbits that look like noisy versions of the unperturbed orbit,supplies the mathematical framework for this observation. A
i.e., dynamical noise coupled into the system has a similagolution of Eq.(1) is called any-pseudo-orbit of the unper-
effect as observational noise without interaction with the dy+tyrbed deterministic dynamical systemy£0). An orbit
namics. In particular, the noisy system generates the sang,} is said tos shadow the orbi{x,} if |x,—yns| <48V n.
period length as the unperturbed system. The shadowing lemma then states that if the unperturbed
In this paper, we discuss a class of maps, where a smadjynamical systerfi.e., Eq.(1) for »=0] is hyperbolic, then
amount of noise leads to fluctuations of the period lengths ofg, every <1 there is any, such that every-pseudo-orbit
an orbit that is not only linearly stable.but .has(adjustablé with < 75, can bes shadowed by an orbit of the unper-
negative Lyapunov exponent of arbitrarily large modulus.tyrhed system, i.e., there exists a solution of the deterministic
This is a rather unexpected phenomenon that can be fullyystem which remaing close to the solution of the per-
understood by studying the structure of the map. Similakyrhed system for all times.
maps have been found to exhibit unexpected instability when A staple periodic orbit far from a bifurcation is a hyper-
being used as elements of coupled map lattfédsin Sec. pojic invariant se{6], hence the shadowing lemma applies.
Ill, we describe an experiment on bubble formation in bail-since all solutions of the unperturbed system relax toward
ing water. In Sec. IV, observed time series data with highthe periodic orbit, the perturbed orbit has to remain close to
sampling rate are converted into Poireamap data. We it for all times, which in particular means that the perturbed
show that a map with the properties described aliawel an  orpit must not contain “phase slips,” i.e., it must remain
additional nonstationarijyproduces data very similar to that synchronized with the period of the unperturbed orbit. This
of the bubbling experiment. We end with some conclusionsypjains the robustness mentioned in the example above.

in Sec. V. Consider now instead the following one-dimensional
map:
Il. STABLE PERIODIC ORBITS WITH NOISE SENSITIVE
PERIOD LENGTH a+bx2 if x,<c
: . : Xni1= , 2
We study a particular behavior of noise perturbed one- et dx, if x,=c,

dimensional dynamical systems in discrete time given by
with 0<d<1, a,b>0, andc=(1-+1—-4ab)/2b—€ (cis
Xn+1= F(Xp) + 7én, (1) € to the left of the intersection of the parabola with the di-
agona). For a=0.6, b=0.3125, ande=0.05, the graph is
where x,f,£e R and &, is white noise, i.e.(¢,)=0 and depicted in Fig. 1. This system possesses a stable periodic
(€ném) = 6n,m- The noise amplitudey will be typically small  orbit (for our choice of parameters of periogl As shown in

1063-651X/2003/6(8)/03621@5)/$20.00 67 036210-1 ©2003 The American Physical Society



HERNANDEZ-CRUZ et al. PHYSICAL REVIEW E 67, 036210 (2003

1 - - - - lemma is valid, the valuey, for any reasonabl& is very
. small, and more importantly the numerical value of the larg-
08 | ] est Lyapunov exponent is unrelatedig since the Lyapunov
B */# exponent does not tell anything about the closeness to the
-~ 06 _*// ] bifurcation. Instead, the distance-x, between the discon-
= : tinuity and the periodic point,<c, closest to it delimits the
E oa noise level at which shadowing breaks down.
. al
02 | Ill. THE BUBBLE FORMATION EXPERIMENT
o When a liquid is heated bubbles are formed preferably in
oL : : : nucleation sites, small inhomogeneities in the inner surface
0 02 04 06 08 1 of the container. In order to better understand bubble forma-
Xy tion, some experiments have been devised where bubbles are

formed inside a capillary tubg8—11].
The apparatus used in the experiments of REf6,11]
consists of a large beaker filled with water at boiling tem-

) o . perature. A small capillary tube is located in the center of the
Fig. 2, a small amount of noise introduces frequent “phasg,qaker. The bottom part of the capillary is sealed with ce-

slips,”i.e., the period of the orbits seems to fluctuate, despit¢amic through which a thin wire enters the capillary. In turn
the fact that the Lyapunov exponentNs=—1.1 and hence 5 small dc current passes through the wire and supplies ad-
expresses strong linear stability. With the small noise ampligitional heat to the water inside the capillary. This arrange-
tude of »=0.025, already about one-third of all cycles pos-ment tries to mimic a nucleation point. The vapor inside the
sess five iterates, and about 5% have a length of six iterateggpillary forms a bubble that is, in principle, detached when
The perturbations by noise push points in the almost marginge puoyancy force exceeds the surface tension at the upper
ally stable part of the graph closer to or farther from thepeck of the capillary. After that a new bubble starts to form,
discontinuity, so that it can take more or less iterations for The time at which a bubble separates from the capillary
the trajectory to reach the lower branch of the map. _can be measured by a low-power laser beam that passes
The reason for the sensitivity with respect to noise despitgnrough the beaker just above the upper neck of the capillary,
the linear stability lies in the discontinuity of the graph, gnq is recorded on the opposite side of the capillary by a
which itself introduces a sequence of discontinuous bifurcaphotodiode. When the bubble separates from the capillary
tions. Under rather slight modifications of the graph, the pethe peam reaches the diode, but as soon as a new bubble
riodic orbit of the noise-free system changes its period, Withsiarts to form, the beam is scattered. The analog signal of the
out a smooth change of the Lyapunov exponent. Hence, thgiode is then digitized and stored in a personal computer. In
closeness of the orbit to a bifurcation is unrelat_ed to thesome cases, the experiment is videotaped and the images are
modulus of the Lyapunov exponent. If the system is close tqqrelated with the data obtained with the laser bdanj.
a bifurcation, a small amount of noise introduces switches ofpjg gives some insight on the mechanisms of bubble forma-
the dynamical behavior from prebifurcated to postbifurcatedion inside the capillary. However, the experimental results
and back, since the additive noise in the state vecfaran  gepend sensibly on the details of the capillary; in some the

be reinterpreted as noise on the parameters of the map. {flire extends inside the capillary more than in others, or the
fact, it is well known[7] that noise modifies the appearance jyner section is not constant.

of bifurcations also in smooth dynamical systems. Hence, part of the experimental data is shown in Fig. 3. The
despite the fact that, also in this example, the shadowingeights of the peaks shown seem not to reflect properties of
the bubbles, and the relaxation appears to be a property of

FIG. 1. Graph of the map Eq2) together with 1000 noisy
iterates ¢y=0.025).

0.8 T the electronics. Hence we have good indications that the only

0.7 relevant information is the time between the detachment of
successive bubbles, or what is the same, the time needed for

0.6 1 a bubble to form and separate from the capillary. From

05| . longer segments of the time series it is evident that there are
sequences of bubbles separated by a bubble that took a short

04 : i

* time to form. From the videotape, we know that the volume
03 r 1 of a bubble is more or less proportional to the time it takes to
02 | i form, so we can speak of large and small bublplgs.
0.1}

IV. MODELING EXPERIMENTAL OBSERVATIONS

0 L L L L 1 L 1 L 1
0 10 20 30 40 io 60 70 80 90 100 After reducing the data to maplike data by the technique
of a Poincae surface of sectiofintroducing a threshold on

FIG. 2. Iterates of Eq(2) with »=0.025. the recorded voltage around 0.5,\the alternation between
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FIG. 3. A segment of the data obtained in the experiment. In this
experiment, the voltage through the wire was 2.1 V.
the production of about 5—7 large bubbles and a single small
bubble is very evidentsee Fig. 4. As shown in Ref[12], -
time intervals obtained from Poin@arsections are perfect =

observables in the sense of Takens embedding theorem; their
dynamical properties are equivalent to phase space observ-
ables. We chose them, since they have a direct physical in-
terpretation in terms of the time intervals in between the
formation of successive bubbles, whi¢assuming almost
constant vapor production by constant heat supply from the
hot wire) corresponds to bubble size. In a first return map of
these observable$,, one observes essentially three pro- FIG. 5. Return map of data generated by our model(Bg(top
nounced maxima of the invariant density: two isolated pointsane) and of the experimental dathottom panel In both figures,
corresponding to  the  combinations T,(Ty.1) the graph of Eq(3) for ¢,=0 is included.

=(long, short) andTy,Ty+1)=(short, long), and a larger

blob representing all points made @6éng, long time inter-  variation can have many origins, such as variations of the
vals. The fact that the attractor is composed of disconnecte@mperature of the water tank requiring more or less heat for
parts suggests that the Poineanap cannot be chaotic since vapor production, or the air pressure modulating the boiling
a chaotic invariant set has at least one expanding directioiemperature.

The natural invariant measure of a system with an expanding We try to model the experimental data by a noise per-
direction is continuously nonzero when restricted to the exiurbed deterministic nonchaotic map that should be able to
panding manifold. On the other hand, the histogram of theproduce fluctuations of the period length. At the same time, it
“periods,” i.e., of one plus the number of large bubblesis required to possess periodic points with almost the same
forming in between two small ones, shows fluctuations of thevalue, since the large time intervals are almost constant, with
period length. The data shown in Fig. 4 show some nonstaa weak tendency to increase toward the small bubble events.
tionarity, but it is evident that the fluctuations of the period It is hence natural to try a map of the family introduced in
length are not directly linked to the variation of the upperSec. Il. With some fine tuning of the parameters and the
enveloping curve, which is something like the maximal timeintroduction of a sinusoidal nonstationarity, we arrive at the
in between successive bubbles. In the experiment, the lattéollowing map:

40 . . . . T T . X _ a(¢n)+c(xn_b)2+ 7én,  Xp<d(én) 3)
- " 16+ né,, Xn>d( ),
£
2 30 1 with a(¢,) =31+1.2cosf,), b=19.5, c=0.0205, d(¢,)
. =36.8+2.9 cosg,), and »=0.13. To introduce nonstation-
20 | ] arity, the parametera andd are varied sinusoidally with a
slow phase angleb,=n/40. Through», about 2% of dy-

namical noise is coupled to the system, and measurement
noise (distributed uniformly in the intervdl—1.2,1.9) was
added for a “realistic” appearance of the resulting time se-
FIG. 4. Part of the Poincarmap data obtained from the inter- ries; 1500 iterates of this noisy map, together with the graph
polation of the experimental data by a cut at a voltagg) for =0, are shown in Fig. 5. This is strikingly indistin-
=0.5V, recording crossings from below. guishable from the equivalent representation of the experi-

0 25 50 75 100 125 150 175 200
n
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FIG. 6. The histogram of the distributions of period lengths, 40r
obtained from the experimental daf@dashed and from 1500 iter-
ates of our mode{continuous. 38 r
mental data. The histogram of period length distribution N
agrees very well with the experimental resulégee Fig. 6,
and the same goes for the time series it¢sde Fig. 7. 34 ¢
Since the map creates a stable periodic orbit, no details of
the graph outside this orbit can be discerned, and hence the 32

model might appear to be rathad hoc A more detailed —— : A
comparison is difficult due to the combined effect of nonsta- 2 34 3 38 40
tionarity and noise. Nonetheless, the following approach
sheds more light into the issue of model verification. We o
assume that the nonstationarity is originated by the drift of at FIG. 8. The properly matched and averaged iterdigsf the

least one system parameter on time scales that are about oexperimentaldashedl and the numerically generatédontinuous
order of magnitude larger than the time intervals in betweerglata(lower plot: magnification of the essential parthe plot can
bubbles. Hence, the experimental data are considered to & interpreted as showing the graph of the underlying one-
produced by an at least one-parameter family of maps, whicHimensional map for different values of the time variant parameter
are all superimposed in a plot of the return map of the fu”the}t med_iates the nonstationarity. Since the map creates stable peri-
time series. However, a suitable selection of all those dat8dic orbits, only a very small part of the gragshown for the
segments, whiciin some reasonable approximatiaepre- maximum and minimun of cog, as dashed-dotted curyesan be

sent this dynamical system for a single fixed parametefXtracted from the data.

value, should give a faithful image of the graph of the map,

if we average over all the data in order to eliminate the noisewith a one-dimensional map with a periodic orbit, the whole
This idea was formalized in Refl13] by the concept of concept boils down to the following procedure.
overembedding: The use of time delay embedding vectors in \We select all subsequenc&={T;_5,Tj_4, ... . Tj+1}

the spirit of Takens with a sufficiently high dimensionality \ith the property thall ;. >c, for k#0 andT;<c with ¢
should allow us to reconstruct the extended phase spacg.ps. |n other words, these are subsequences of the form
given by the phase space of the dynamical system plus the| | | | S|, where L (S denote a time interval larger
space of the time variant parameters. Neighbors of a SeleCte{ghortey thenc. Moreover, in order to remove the effect of

embe_ddlng vector then should represent almost t_he SaMfe nonstationarity expressed by the variation of the enve-
equation of motion. Due to the fact that we are dealing her?ope in Fig. 4, we requira<T; , (<b, k0 with some suit
. ) ]+k ] -

40 able interval [a,b]. Then we study T,=(T;,), k=

' ' ' —5,...,1,averaging over all the sequencgsfound in the
data and fulfilling these conditions. These averages are
30 | shown, for both the experimental data and for the data cre-
o ated by our noisy nonstationary map, in Fig. 8 for several
intervals[a,b] in a two-dimensional embedding. In each
207 case, we observe a short part of the noise-free graph of the
50 100 150 20

map. The nonstationarity of the experimental data seems to
0 consist in an up-down shift of the left part of the graph,
together with a corresponding truncation at the right,
FIG. 7. Typical time series created by Hg) to be compared to whereas the lower right branch seems to be time indepen-
Fig. 4. dent. The similarity of the results from experimental data and

n
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our model data confirms that our model is reasonable. V. CONCLUSIONS
A comment on estimating Lyapunov exponents is in order.

Smce the period of t_he cy cles varies, the distances of thﬁnuitive property that despite arbitrarily negative Lyapunov
images of nearby points in embedding space can be quitg, ,,nents smalil perturbations can induce phase slips of the
large. However, a simple analysis of how the average disqyisy periodic orbit and hence can introduce random fluctua-
tance between thkth images of pairs of nearby points de- tjons of the period length. The reason for this behavior lies in
pends onk shows that this growth is not exponentiaee,  the vicinity of these maps to an unconventional type of bi-
e.g., the algorithms described in Rgt4]). This type of in-  fyrcation. Due to a discontinuity of the graph of the map,
stability is also found in the data obtained for the modelsmall parameter variations can modify the period length, al-
whose Lyapunov exponent has the valug,,=— (the  though no eigenvalue of the Jacobian ever becomes unity.
lower branch of the map is horizontal, hence the periodic We have described a bubble formation experiment in boil-
orbit is superstab)e This may serve as an example that oneing water, where irregular fluctuations of a period length are
has to distinguish noise-induced divergences from positive@bserved. By data analysis, we have shown that a map of the
Lyapunov exponents while analyzing the experimental datatype described before most surely is responsible for the be-
Given the success of the model, we would like to know ifhavior. We proposed the physical mechanism from which
it can give some insight to bubble formation in a small cap-such a behavior is to be expected.
illary, and in particular why a train of large bubbles is inter- As & general conclusion, this example establishes an in-
rupted by a small one. The process of bubble formation inferesting example of the interplay of nonlinearity and noise,
side a capillary is very complex and not fully understood.Where stable pgrlodlc orbits create |rr¢gu[arltles that naively
High-speed camera recordings00 frames per secopatill would be more interpreted as deterministic chaos. However,

do not resolve this complexity. Before detachment, the forn{" this case, the strongest argument against chaos_ is the dis-
of the bubble is a sphere outside the capillary attached to onnectedness of the reconstructed attractor, which contra-

cylinder inside the capillary. The bubble grows because mi- icts the continuity of a Sinal-Ruelle-Bowens measure in the
expanding direction. Since we are treating data in discrete

crobubbl_es are formeq in the lower part of the heating eretime, the alternative could be a three-band attractor similar to
and are incorporated into the larger bubble. After the detach[

. L the two-band attractor in the logistic equation slightly be-
ment of the spherical part of the bubble, the cylindrical pa"yond the Feigenbaum point, but a regular alternation from
recoils into the capillary and a new bubble begins to form.; o pand to the other takes place.

What is observed is that sometimes the microbubbles begin

to form a new bubble below the cylindrical one, which is
expelled as a small bubble by the bubble under it. The latter Thjs work was partially supported by DGAPA-UNAM
bubble also expels the water that separates it from the smalinder Grant No. IN1033300 and by DFG within Grant No.
bubble and will eventually be expelled as a large bubble. BysPp 1114. R.R. acknowledges the hospitality of the Max
expelling this excess water, the system goes back to its initigPlanck Institute for the Physics of Complex Systems, where

We have studied a class of maps, which has the counter-
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